Newmarket Till Aquitard:
Optimum grain packing with a calcite-rich cement

Why study Newmarket Till?

It is an important regional aquitard

Sharpe et al., 2015
Geophysical Properties, Newmarket Till

High-resolution digital laser scans of Newmarket Till cores from Oshawa reveal elevated densities of 2.28 – 2.40 g/cm³

Newmarket Till:
High velocity, similar to limestone (2.2-2.6 g/cm³)

Crow et al., 2017, CJES; 2017 SAGEEP
Why is Newmarket Till of High Density?

Newmarket Till is a stony, sandy, silty, clay-poor diamicton. It should not be that dense, nor an aquitard, given the high sand contents.

Newmarket Till - Knowledge

- Sand – silt – clay size distribution
- Geographic distribution
- Stratigraphic context
- Limited understanding of mineralogy, geochemistry

Source constituents that make up the Newmarket Till?
Why does Newmarket Till pretend it is a competent rock?
Cemented?
Optimum grain size for packing/over-consolidation?
Both processes?
Geographic Distribution

East of Niagara Escarpment. South of the Precambrian Shield. West of Frontenac axis.
Note 1: North facing escarpment at the Precambrian – Paleozoic inconformity (black dashed line)

Note 2: Dummer ‘moraine’; mapped as a separate unit from Newmarket Till
Sampling transect
Paleozoic Formations

- Alternating limestone and shale
- Wacke-grainstone + shale
- Lime mudstone (maarl)

Gull River Fm
Newmarket Till – Field Observations

- Typical red-brown shield till (~1 m)
- Newmarket till (~3-4 m)
- Newmarket till (~15 m)
- Newmarket till (~2 m) near unconformity

1 km
10 km
Dolostone with maarl interbeds

Bobcaygeon Fm (raft)

Gull River Fm
Pebbles in Newmarket Till

Paleozoics:
- Black limestone
- Grey limestone
- Green limestone
- White limestone
- Lithic limestone
- Dolostone
- Cement
- Cement + l’stone
- Pebbly sandstone
- Chert

Shield:
- fg gabbro
- mg gabbro
- red gabbro
- fg tonalite
- mg tonalite
- fg granitoid
- mg granitoid
- pegmatite
- schist

Provenance
% Paleozoic: % Shield
Percentage of Paleozoic Pebbles, 8-16 mm size fraction
1.) Optical mineralogy suggests little variability in one core

2.) Two provenance sources
 - **Shield:** qtz, K’spar, plagioclase + granitoid clasts
 - **Paleozoics:** calcite, dolomite + limestone clasts

3.) The intra-grain matrix is not resolvable optically
Newmarket Till
False color mineral maps

<table>
<thead>
<tr>
<th>Phase</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>34.93</td>
</tr>
<tr>
<td>K feldspar</td>
<td>12.15</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>5.88</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>2.47</td>
</tr>
<tr>
<td>Dolomite</td>
<td>1.51</td>
</tr>
<tr>
<td>Calcite</td>
<td>14.16</td>
</tr>
<tr>
<td>Kyanite</td>
<td>0.04</td>
</tr>
<tr>
<td>Groundmass & Cement</td>
<td>24.23</td>
</tr>
<tr>
<td>Unidentified</td>
<td>4.63</td>
</tr>
</tbody>
</table>

Efficient comminution of mineral grains
Newmarket Till Aquitard: mineral grain size reduction via comminution

Hexagonal calcite plates
Newmarket Till Aquitard: **calcite** plates (cement)
Calcite-rich cement

- Multiple cement events?
- Syn-depositional?
- Post-depositional?
- Is all of Newmarket Till cemented?
- Or only specific areas geographically?
- Or specific horizons? NB - remember sonic log.
Localized Pressure Solution

Over-consolidation, very localized calcite cement precipitation
Sub-glacial calcite solution and precipitation due to pressure variation

Deposits formed by subglacial precipitation of CaCO$_3$ (Hallet, 1976, GSA Bulletin. Columbia Icefields, Alberta)

REGIONAL calcite solution and precipitation?

High Pressure (17 MPa, 2500 psi).

High CaCO$_3$ solubility in pore fluid

ICE SHEET

Newmarket Till

Cemented Newmarket Till

Very Low Pressure.
Low CaCO$_3$ solubility in pore fluid, calcite precipitation
XRD (clay+silt) – PW, Transect, Duffins Creek, Havelock
XRD (clay+silt)– PW, Transect, Duffins Creek, Havelock

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Qtz</th>
<th>Plag</th>
<th>K'spar</th>
<th>Bt/Phl</th>
<th>Musc</th>
<th>Chl</th>
<th>Cal</th>
<th>Dol</th>
<th>Amp</th>
<th>Cpx</th>
<th>Hem</th>
<th>Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWD-TS-005</td>
<td>Purple Woods</td>
<td>19</td>
<td>15</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>39</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD-TS-007</td>
<td>Purple Woods</td>
<td>20</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>43</td>
<td>8</td>
<td>5</td>
<td>tr</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD-TS-009</td>
<td>Purple Woods</td>
<td>19</td>
<td>17</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>41</td>
<td>8</td>
<td>6</td>
<td>tr</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD-TS-011</td>
<td>Purple Woods</td>
<td>18</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>41</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD-TS-013</td>
<td>Purple Woods</td>
<td>19</td>
<td>16</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>40</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD-TS-015</td>
<td>Purple Woods</td>
<td>23</td>
<td>22</td>
<td>8</td>
<td>1</td>
<td>tr</td>
<td>30</td>
<td>7</td>
<td>7</td>
<td>tr</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD-TS-017</td>
<td>Purple Woods</td>
<td>20</td>
<td>19</td>
<td>7</td>
<td>tr</td>
<td>2</td>
<td>37</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD-TS-018</td>
<td>Purple Woods</td>
<td>21</td>
<td>18</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>38</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWD-CLAY</td>
<td>Purple Woods</td>
<td>21</td>
<td>18</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>38</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-004</td>
<td>Transect</td>
<td>22</td>
<td>23</td>
<td>13</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>6</td>
<td>11</td>
<td></td>
<td></td>
<td>tr</td>
<td></td>
</tr>
<tr>
<td>KIA-16-005A</td>
<td>Transect</td>
<td>14</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>tr</td>
<td>6</td>
<td>29</td>
<td>31</td>
<td>1</td>
<td></td>
<td></td>
<td>tr</td>
</tr>
<tr>
<td>KIA-16-006</td>
<td>Transect</td>
<td>22</td>
<td>6</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>21</td>
<td>30</td>
<td>tr</td>
<td></td>
<td></td>
<td>tr</td>
</tr>
<tr>
<td>KIA-16-007</td>
<td>Transect</td>
<td>20</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>28</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>tr</td>
</tr>
<tr>
<td>KIA-16-008</td>
<td>Transect</td>
<td>19</td>
<td>13</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>31</td>
<td>20</td>
<td>5</td>
<td>tr</td>
<td></td>
<td></td>
<td>tr</td>
</tr>
<tr>
<td>KIA-16-009</td>
<td>Transect</td>
<td>17</td>
<td>15</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>28</td>
<td>15</td>
<td>6</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-010</td>
<td>Transect</td>
<td>21</td>
<td>16</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>33</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>tr</td>
</tr>
<tr>
<td>KIA-16-011</td>
<td>Transect</td>
<td>20</td>
<td>19</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>26</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>KIA-16-012</td>
<td>Transect</td>
<td>21</td>
<td>25</td>
<td>9</td>
<td>tr</td>
<td>2</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KIA-16-013</td>
<td>Transect</td>
<td>22</td>
<td>22</td>
<td>9</td>
<td>tr</td>
<td>37</td>
<td>tr</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-014</td>
<td>Transect</td>
<td>21</td>
<td>24</td>
<td>10</td>
<td>1</td>
<td>tr</td>
<td>31</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>KIA-16-015</td>
<td>Transect</td>
<td>26</td>
<td>27</td>
<td>10</td>
<td>1</td>
<td>23</td>
<td>4</td>
<td>8</td>
<td>tr</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-016</td>
<td>Transect</td>
<td>24</td>
<td>30</td>
<td>11</td>
<td>1</td>
<td>19</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-017</td>
<td>Transect</td>
<td>27</td>
<td>31</td>
<td>12</td>
<td>1</td>
<td>14</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-018</td>
<td>Transect</td>
<td>27</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>36</td>
<td>tr</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>tr</td>
</tr>
<tr>
<td>KIA-16-019</td>
<td>Transect</td>
<td>23</td>
<td>26</td>
<td>10</td>
<td>1</td>
<td>tr</td>
<td>31</td>
<td>tr</td>
<td>8</td>
<td>tr</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-020</td>
<td>Transect</td>
<td>22</td>
<td>21</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>KIA-16-023A</td>
<td>Transect</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>tr</td>
<td>3</td>
<td>15</td>
<td>45</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-024A</td>
<td>Transect</td>
<td>21</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>53</td>
<td>tr</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-16-026</td>
<td>Transect</td>
<td>11</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>26</td>
<td>46</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-17-001</td>
<td>Duffins Creek</td>
<td>17</td>
<td>14</td>
<td>7</td>
<td>1</td>
<td>tr</td>
<td>50</td>
<td>7</td>
<td>4</td>
<td>tr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-17-002</td>
<td>Havelock (N)</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>tr</td>
<td>tr</td>
<td>21</td>
<td>tr</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Purple Woods borehole: clay+silt fraction very homogenous mineralogy; clay fraction calcite-rich
Newmarket Till clay+silt fraction mineralogy generally similar, but SOME IMPORTANT DIFFERENCES

Gull River Fm (dolostone)

Purple Woods borehole: clay+silt fraction very homogenous mineralogy; clay fraction calcite-rich
Newmarket Till clay+silt fraction mineralogy generally similar, but SOME IMPORTANT DIFFERENCES
Newmarket Till, Conclusions:

1.) Fractal-like grain size distribution of comminuted minerals (down to <1 um)
 has led to optimum packing (= higher density)
2.) Over-consolidation effects due to ice sheet loading and calcite pressure solution
 and pressure shadow re-precipitation (= higher density)
3.) Calcite-rich cement precipitating from pore fluids: 2 events
 ‘Syn-depositional’ related to pressure solution (very localized, mm-scale)
 ‘Post-depositional’ related to ice sheet decay, pressure drop, over-saturation, precipitation.

Wider Applications?
“On the north campus of the University of Waterloo its (Catfish Creek Till) hardness made it suitable for diamond drill coring – the resulting core resembled concrete”

P.F. Karrow (1988), Catfish Creek Till, An Important glacial deposit in Southwestern Ontario
Thanks for listening